理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-8 共查到数学 the Chromatic Number相关记录8条 . 查询时间(0.093 秒)
We deal with incompactness. Assume the existence of non-reflecting stationary set of cofinality kappa . We prove that one can define a graph G whose chromatic number is > kappa, while the chromatic nu...
A grid drawing of a graph maps vertices to grid points and edges to line segments that avoid grid points representing other vertices. We show that there is a number of grid points that some line segme...
Abstract: We study graphs whose chromatic number is close to the order of the graph (the number of vertices). Both when the chromatic number is a constant multiple of the order and when the difference...
Abstract: For a graph $G$, let $\chi(G)$ denote its chromatic number and $\sigma(G)$ denote the order of the largest clique subdivision in $G$. Let H(n) be the maximum of $\chi(G)/\sigma(G)$ over all ...
Abstract: Let $ H = (V,E) $ be a hypergraph. By the chromatic number of a hypergraph $ H = (V,E) $ we mean the minimum number $\chi(H)$ of colors needed to paint all the vertices in $ V $ so that any ...
Let $G$ be any triangle-free graph with maximum degree $\Delta\leq 3$. Staton proved that the independence number of $G$ is at least $\frac{5}{14}n$. Heckman and Thomas conjectured that Staton's resul...
A well-studied concept is that of the total chromatic number. A proper total colouring of a graph is a colouring of both vertices and edges so that every pair of adjacent vertices receive di erent col...
Let G be a planar graph with δ(G)≥3, fo be a face of G. In this paper it is proved that for any Halin graph with △(G)≥6, X (G)=△(G)+1, where △(G), Xo (G) denote the maximum degree and the complete chr...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...