理学 >>> 生物学 >>> 生物数学 生物物理学 生物化学 细胞生物学 生理学 发育生物学 遗传学 放射生物学 分子生物学 生物进化论 生态学 神经生物学 植物学 昆虫学 动物学 微生物学 水生生物学 病毒学 人类学 生物工程 生物学其他学科
搜索结果: 31-45 共查到生物学 生物物理相关记录779条 . 查询时间(0.278 秒)
骨骼肌在支持运动和能量代谢调节方面发挥着极其重要的作用。然而,它的功能会因衰老和肌肉相关的疾病而受损,导致骨骼肌表现出耐力或力量下降。骨骼肌功能随着年龄的增长或疾病的发展而下降。在30岁以后,人体肌肉质量大约每十年减少3-8%。杜氏肌营养不良症(Duchenne Muscular Dystrophy, DMD)是儿童常见的肌营养不良症,患病儿童在7-12岁时彻底丧失行走能力,最终由于骨骼肌和心肌的...
2023年10月13日,中国科学院生物物理研究所朱平研究团队与中国科学院青岛生物能源与过程研究所冯银刚研究团队合作,在《Nature Communications》杂志发表了题为"Structure of the transcription open complex of distinct σI factors"的研究论文。该研究发现热纤梭菌转录调控因子σI具有一种独特的组装和启动子识别机制,并揭...
2023年10月13日,中国科学院生物物理所薛愿超研究员到访海洋生物多样性与进化研究所,并在达尔文馆学术厅为师生们进行了题为“RNA功能基因组学新技术及应用”的主题学术报告。
大脑如何提升信息编码效率?近些年的研究表明,除了增强神经反应强度和稳定性,神经系统内提升编码效率的另一个重要的途径是调节不同神经元之间的活动共变性。较多认知机制如注意机制,利用这条途径增强认知系统感知觉敏感度。人类视觉皮层是复杂的多级神经系统。注意是如何调节不同脑区内部的神经活动共变性以及调节信号是如何在脑区之间传递与协调?
大脑如何提升信息编码效率?近些年的研究表明,除了增强神经反应强度和稳定性,神经系统内提升编码效率的另一个重要的途径是调节不同神经元之间的活动共变性。较多认知机制如注意机制,利用这条途径增强认知系统感知觉敏感度。人类视觉皮层是复杂的多级神经系统。注意是如何调节不同脑区内部的神经活动共变性以及调节信号是如何在脑区之间传递与协调?
大脑是如何提升信息编码效率的?近些年研究表明,除了增强神经反应强度和稳定性,神经系统内提升编码效率的另一个重要的途径是调节不同神经元之间的活动共变性。很多认知机制,例如注意机制,利用这条途径增强认知系统感知觉敏感度。人类视觉皮层是一个复杂的多级神经系统。注意是如何调节不同脑区内部的神经活动共变性,以及调节信号是如何在脑区之间传递与协调的?
生物大分子自组装成超分子结构后会产生重要功能,这与生命系统中的生理或病理状态相关。蛋白质和多肽组装成淀粉样纤维的行为已被认为与神经退行性疾病密切联系。淀粉样蛋白组装体具有相似的交叉β结构,其中β链片段垂直于长纤维排列。这种类型的组装是由主链氢键和侧链相互作用(如π-π堆积、疏水相互作用和范德华)驱动。β-淀粉样蛋白(Aβ)可以交叉β模式自组装成低聚物或纤维丝,损伤神经元和突触,导致神经退行性疾病,...
2023年9月13日,《细胞报告》(Cell Reports)在线发表了中国科学院生物物理研究所朱平研究组撰写的题为Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture的研究论文。该研究通过冷冻电子断层三维成像方法...
2023年9月13日,《细胞报告》(Cell Reports)在线发表了中国科学院生物物理研究所朱平研究组撰写的题为冷冻内皮素研究从体外到体内揭示了染色质的一般折叠模式与双启动螺旋结构的研究论文。该研究通过冷冻电子断层三维成像方法(低温电子断层扫描,低温冷冻),分别探究了体外组装的长染色质纤维,在HeLa细胞中提取的染色质纤维以及蛙血红细胞核内的原位染色质纤维结构。研究发现,这些由连接组蛋白介导形...
夜间水汽交换过程是生态系统水循环的重要组成部分,对维持生态系统水量平衡和植物生理发育具有重要意义。凝结水汽(露水)是干旱区动植物、微生物的重要水源,能够抑制叶片蒸腾并有助于固碳,利于提高水分利用效率,亦可作为农业灌溉的补充水源。夜间蒸散发将引发黎明前叶片水势和土壤水势的不平衡,较高的夜间蒸散发可加速清晨碳积累,有助于提高农作物产量。目前关于夜间水汽交换的研究较少,而已有研究聚焦于干旱半干旱或者热带...
细胞内的蛋白质、核酸等大分子通过液-液相分离(liquid-liquid phase separation,LLPS),动态组装成高度浓缩且具有类似液体性质的凝聚体微区,执行不同的生物学功能。相分离的异常是多种神经退行性疾病发病机制中的早期诱发事件之一,目前已有研究发现包括TDP-43、FUS、Tau等在内的退行性疾病相关的蛋白,均能够在细胞内和体外发生液-液相分离,并在特定条件下促进液-固转化,...
细胞内的蛋白质、核酸等大分子通过液-液相分离(liquid-liquid phase separation,LLPS),动态组装成高度浓缩且具有类似液体性质的凝聚体微区,执行不同的生物学功能。相分离的异常是多种神经退行性疾病发病机制中的早期诱发事件之一,目前已有研究发现包括TDP-43、FUS、Tau等在内的退行性疾病相关的蛋白,均能够在细胞内和体外发生液-液相分离,并在特定条件下促进液-固转化,...
细胞内的蛋白质、核酸等大分子通过液-液相分离(liquid-liquid phase separation,LLPS),动态组装成高度浓缩且具有类似液体性质的凝聚体微区,执行不同的生物学功能。相分离的异常是多种神经退行性疾病发病机制中的早期诱发事件之一,目前已有研究发现包括TDP-43,FUS,Tau等在内的退行性疾病相关的蛋白,均能够在细胞内和体外发生液-液相分离,并且在特定条件下促进液-固转化...
特发性肺纤维化(IPF)是慢性、进行性、不可逆的肺部疾病,其特征为肺纤维化和肺功能受损,最终导致呼吸衰竭。许多研究已发现,干细胞外泌体在纤维化的干预中颇具潜力。其中,间充质干细胞外泌体(MSC-Exos)研究最为广泛。它们含有丰富的生物活性物质,可减轻炎症、抑制纤维瘢痕组织形成,并促进受损组织再生。前期研究通过组学分析发现,人源胚胎干细胞外泌体(hESC-Exos)在调控损伤修复方面的能力优于MS...
在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1是在进化过程中保守的异源三聚体组蛋白伴侣复合物,负责将新合成的H3-H4组蛋白装配到子链DNA上,完成从头装配的核小体组装的第一步,即形成一个由DNA缠绕H3-H4四聚体组成的核小体组装中间态Tetr...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...