理学 >>> 数学 >>> 代数几何学 >>>
搜索结果: 1-15 共查到代数几何学相关记录19条 . 查询时间(2.187 秒)
The Bogomolv theorem holds great importance in algebraic geometry, particularly in the field of birational geometry. During this presentation, we will introduce our recent work on a variant of the Bog...
I will first give a brief introduction to T. Mochizuki's Theory of twistor D-modules. Then, we use it to study Kodaira-type vanishings. In particular, we will generalize Saito vanishing, and give a Ka...
In these two talks, some results on derived representation type via topological and homological methods will be introduced: (1) Two geometric models for graded skew-gentle algebras will be introduced ...
In these two talks, some results on derived representation type via topological and homological methods will be introduced: (1) Two geometric models for graded skew-gentle algebras will be introduced ...
Geometrically continuous splines are piecewise polynomials defined on a collection of patches stitched together through transition maps. In this talk, we introduce an algebraic framework to study geom...
We propose two families of nonconforming finite elements on $n$-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of ...
We revisit the Harder-Narasimhan stratification on a minuscule padic flag variety, by the theory of modifications of G-bundles on the FarguesFontaine curve. We compare the Harder-Narasimhan strata wit...
仿射Deligne-Lusztig簇首先由Rapoport引入。其几何结构蕴含了志村簇重要的算术信息。不可约分支的参数化问题是仿射Deligne-Lusztig簇研究领域的一个主要的公开问题。为了解决这一难题, 陈苗芬和朱歆文提出了一个著名猜想:不可约分支的轨道集与Weyl模的特定权空间的晶体基之间存在典则的一一对应。通过构造不可约分支上的晶体结构,我们给出了陈-朱猜想的完整证明,并得到了计算不可...
Invariant geometric flows in certain geometries have been studied extensively from different points of view. In this talk, we are mainly concerned with geometric aspects of multi-component integrable ...
This paper considers polynomial optimization with unbounded sets. We give a homogenization formulation and propose a hierarchy of Moment-SOS relaxations to solve it. Under the assumptions that the fea...
The theory of tetragonal curves is established and first applied to the study of algebro-geometric quasi-periodic solutions of discrete soliton equations. Using the zero-curvature equation and the dis...
In this talk, I will explain the relationship between the Morrison-Kawamata cone conjecture for Calabi-Yau fiber spaces and the existence of Shokurov polytopes. For K3 fibrations, this enables us to e...
In this talk I will introduce special and generalized cycles on Shimura varieties and discuss how to use them to construct geometric and arithmetic theta series. Then I will briefly discuss the connec...
数学家,长期致力于多复变函数论、复微分几何与代数几何研究。1956年5月生于香港。1978年于美国耶鲁大学获硕士学位。1980年于美国斯坦福大学获博士学位。2015年当选为中国科学院院士。
基础数学代数几何学家,从事代数几何模空间方向的研究。1961年3月出生于上海。1982年毕业于复旦大学,1984年获该校硕士学位,1989年获哈佛大学博士学位。2021年当选为中国科学院院士。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...