搜索结果: 1-1 共查到“动力与电气工程 LSTM”相关记录1条 . 查询时间(0.031 秒)
对定子线棒出水温度最大温差(出水温差)进行预测,对于保障汽轮发电机的安全运行具有重要意义。但由于发电机运行过程工况多变,温差时间序列变化模式复杂,趋势预测相对困难。本文使用长短时记忆神经网络(LSTM)对复杂的变化模式进行学习,并进一步融合了差分整合移动平均自回归模型(ARIMA),用以弥补工况多变导致的训练不足的问题,从而对LSTM预测结果进行修正。然后,在型号为QFSN-660-2-22的汽轮...