理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-8 共查到知识库 数学 Harnack inequality相关记录8条 . 查询时间(0.091 秒)
Let M be a complete non-compact Riemannian manifold. For p ∈ (1,+∞), let Δp be the p-Laplace operator on M. One says that M is p-hyperbolic if there exists a Green function for Δp (see [Ho1,2]); oth...
We consider an elliptic equation with a divergence-free drift b. We prove that an inequality of Harnack type holds under the assumption b ∈ Ln/2+δ ∩ L2 where δ > 0. As an application we provide a one ...
We establish the Harnack inequality for advection-diffusion equations with divergencefree drifts of low regularity.While our previous work [IKR] considered the elliptic case, here we treat the more ch...
In this paper we prove an invariant Harnack inequality on Carnot-Carath\'eodory balls for fractional powers of sub-Laplacians in Carnot groups. The proof relies on an "abstract" formulation of a techn...
By constructing a coupling in two steps and using the Girsanov theorem under a regular conditional probability, the log-Harnack inequality is established for a large class of Gruschin type semigroups ...
We discuss the problem how "bad" may be lower-order coefficients in elliptic and parabolic second order equations to ensure some qualitative properties of solution such as strong maximum principle, H...
By proving an L2-gradient estimate for the corresponding Galerkin approximations,the log-Harnack inequality is established for the semigroup associated to a class of stochastic Burgers equations. As a...
We study linear time fractional diffusion equations in divergence form of time order less than one. It is merely assumed that the coefficients are measurable and bounded, and that they satisfy a unifo...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...