搜索结果: 1-8 共查到“计算机科学技术 NMF”相关记录8条 . 查询时间(0.097 秒)
结合图像融合的PCA与NMF相融合的人脸识别
图像融合 主成分分析(PCA) 非负矩阵分解(NMF)
2009/12/10
提出一种结合图像融合的PCA与NMF相融合的人脸识别的识别方法。采用小波变换对图像进行处理,对于包含主要信息的低频子图用PCA进行特征抽取,而其他三个高频子图,虽然描述信息相对较少但包含重要的分类信息。为了减少计算量,对高频子图进行图像融合,再用NMF进行特征抽取,采用最近邻分类方法进行分类。最后对这两个识别结果进行加权处理,得到最终的识别结果。实验证明可以有效地提高识别率。
NMF与LDA相结合的彩色人脸识别
人脸识别 非负矩阵分解 线性判别分析
2009/12/3
为了提高彩色人脸识别的性能,提出了一种非负矩阵分解与线性判别分析相结合的彩色人脸识别算法。首先采用非负矩阵分解算法对彩色人脸图像不同颜色通道的信息进行编码,计算彩色人脸图像空间的基图像;然后根据非负矩阵分解计算得到的图像分解系数,融入人脸对象的类别信息,采用线性判别分析算法计算最优的鉴别子空间;最后以彩色人脸图像的投影系数为特征,采用最近邻分类算法进行人脸识别。在CVL和CMU PIE人脸数据库上...
基于CSVD-NMF的人脸识别算法
类估计基空间奇异值分解 非负矩阵因子 特征提取
2009/8/13
基于SVD的人脸识别算法具有共同的缺点,即不同人脸图像对应的奇异值向量所在的基空间不一致,从而造成识别率低下。该文分析2种改进的类估计基空间奇异值分解算法(CSVD),通过对比实验选择出其中一种具有优势的CSVD算法。并在特征提取环节,提出CSVD算法与非负矩阵因子算法特征数据相融合的人脸识别算法。在ORL数据库上的实验结果表明,该结合方法有效地提高了识别率和训练速度。
基于NMF分组策略的人脸识别
非负矩阵分解 人脸识别 基图像
2009/8/12
提出一种运用非负矩阵分解(NMF)分组策略进行人脸识别的方法。将训练图像分组,分别对每组图像作NMF,获取每组图像的基图像构成的非负特征子空间,将训练图像和测试图像分别向各个特征子空间进行投影,将每组图像提取出的特征系数混合,根据最近邻原则进行识别。基于ORL人脸数据库上的实验证明了该方法的有效性。
NMF初始化研究及其在文本分类中的应用
非负矩阵分解 模糊C平均 文本分类
2009/8/3
对非负矩阵分解的初始化进行研究,提出针对文本分类的主成分分析(PCA)、有监督PCA(SPCA)和模糊C平均3种初始化方法并进行了实验。多类文本分类的实验结果表明,这些方法有效地解决了初值对结果的影响问题,不同程度地提高了文本分类结果,其中SPCA优于其他2种方法。
基于NMF的多光谱图像和全色图像融合方法
图像融合 非负矩阵分解 特征基
2009/4/24
提出了一种基于非负矩阵分解的多光谱图像与全色图像的融合算法。在非负矩阵分解过程中,将低分辨率的多光谱图像和高分辨率的全色图像作为原始数据,非负矩阵分解得到的特征基包含了原始图像的整体特征,将高分辨率图像与分解得到的特征基中的第一特征基作直方图匹配,并代替第一特征基。利用特征基进行重构,得到具有较高的空间分辨率和保持原有多光谱图像的光谱信息的融合图像。主观视觉效果分析和客观统计参数评价分析表明,基于...
基于NMF图像重构的人脸识别
非负矩阵分解 人脸识别 重构
2009/4/24
由传统的人脸识别方法产生的人脸特征子空间通常是由人脸库中所有训练样本产生的一个通用子空间,该空间更多地包含了所有人脸样本的共性特征,而忽略了个性特征。该文提出一种基于NMF图像重构的方法,以单个人的训练样本集获取其人脸特征子空间,将识别图像向每一个特征子空间中进行映射及重构,并以重构图像的误差作为判据实现人脸识别。在ORL标准人脸库进行的计算机仿真证实了该方法的有效性。