理学 >>> 生物学 >>> 生物数学 生物物理学 生物化学 细胞生物学 生理学 发育生物学 遗传学 放射生物学 分子生物学 生物进化论 生态学 神经生物学 植物学 昆虫学 动物学 微生物学 水生生物学 病毒学 人类学 生物工程 生物学其他学科
搜索结果: 1-15 共查到生物学 仿生相关记录182条 . 查询时间(0.101 秒)
为抢抓人工智能发展的重大战略机遇,我国在《新一代人工智能发展规划》中明确指出要大力开展具有成像功能的类脑视觉传感技术研究。神经形态类脑视觉硬件作为具有光信息感知、信息处理、信息存储、逻辑思维和判断功能的新型器件,是构建类脑视觉感知和实现超低功耗类脑存算的核心部件,在人工智能、机器视觉、智能家居、自动驾驶、工业检测、生物医学成像及智慧健康等领域呈现出巨大发展潜力。传统神经形态视觉系统通过将传感单元、...
在生物体中,质子的浓度比其他离子低六七个数量级,为控制质子传输、维持pH平衡,生物质子通道采用了一种与其他离子通道不同的传输机制。它并不需要一个开放的通道来传输物质,而是内部形成一条连续的氢键线,质子可以在线上连续跳跃。这种独特的机制可以阻止离子和水分子的迁移,从而实现完美的质子选择性,允许质子快速传输的同时阻止其他离子和分子的传输。
生物酶催化剂得益于酶分子通道的限域作用,使其可以实现低能耗、高转化率、高选择性、快速反应的化学合成。通过学习酶分子通道的结构,研究人员发展出了一系列纳米多孔材料作为纳米限域催化剂,可以降低反应温度并提高反应效率,但要实现接近酶催化的反应性能仍然是一个挑战。2018年,理化所江雷院士提出了“量子限域超流”的概念,并指出将其引入化学领域,将引发出精准高效的化学合成,即“量子限域超流化学反应”。理化所张...
太阳能光催化分解水绿氢制备技术属于前沿和颠覆性低碳技术,其走向应用的关键是构建高效、稳定且低成本的太阳能驱动半导体光催化材料薄膜(即人工光合成膜,亦被称为人工树叶)。领域常用的薄膜制备技术因制备环境苛刻或成膜质量差,所得薄膜往往难以满足太阳能光催化分解水制氢的实际应用需求。
近日,机械工程学院智能装备与数控技术研究所在流体力学顶级期刊Physics of Fluids上发表题为“Delayed action leads to faster turning of fish by interaction with neighbor”研究论文。该文被选为当期的Featured 文章,在期刊首页重点展示,并被美国物理学联合会《科学之光》(AIP Scilight)以“Fish...
阿司匹林(乙酰水杨酸)是一种有百年历史的解热、镇痛抗炎药。目前,阿司匹林主要通过O-乙酰化反应制备。常用催化剂包括浓硫酸等酸性化合物和吡啶等碱性化合物,它们催化O-乙酰化反应所需的反应温度较高,难以完全转化并易造成环境污染。生物酶催化剂得益于酶分子通道的限域作用,使其可以实现低能耗、高转化率、高选择性、快速反应的化学合成。通过学习酶分子通道的结构,研究人员发展出一系列纳米多孔材料作为纳米限域催化剂...
人工神经网络是模拟人脑神经活动的重要模式识别工具,备受关注。近年来,深度神经网络(Deep Neural Networks,DNN)的改进与优化工作集中于网络结构和损失函数的设计,而神经元模型的发展有限。神经生物学和认知神经科学的研究表明,神经元的学习能力是生物神经系统完成学习任务和记忆任务的重要基础。这些机理可促使科学家在神经元设计和优化方面进一步提高DNN的性能。
本发明涉及一种在钛及钛合金表面采用仿生方法制备含硅羟基磷酸钙的仿生 溶液和仿生制备方法。仿生溶液中,各离子浓度为(毫摩尔/升,mM):HPO42-,1.0; Ca2+,2.5;Na+,142;HCO3-4.2;Cl-,147;SiO32-,0.5-20.0;SO42-,0.5;Mg2+,1.5; K-...
仿生结构设计能够有效弥补人工材料韧性和强度无法兼顾这一缺陷。然而,当前仿生材料的性能却相当有限,虽然不乏报道了断裂韧性和强度均比天然珍珠母更高的人工结构陶瓷,但这主要得益于其原材料的固有性能而非多级次结构设计。人工仿生材料结构设计带来的性能增强幅度远不如天然珍珠母。实际上,将跨尺度下的多种设计原理集成到一种材料中相当具有挑战性,因为纳米尺度的结构对宏观机械性能的影响难以预测,目前尚未见到能同时控制...
植被是典型的地面背景,针对植被的高光谱材料一直是工程领域的重点和难点:一方面,植物叶片具有独特的太阳光谱反射特征,材料需要在整个太阳光谱内与叶片光谱特征一致;另一方面,植物叶片的颜色及光谱特征会发生变化,材料需要具备变色能力。近日,中国科学技术大学工程科学学院研究团队针对上述难题,基于仿生思想研制了一种新型高光谱变色材料(图1)。该材料能模仿落叶植被在绿色和黄色之间的变色现象,且在两种色态下均能复...
天然光合生物系统存在吸收光谱窄、电子传递链复杂和能量损失大等问题。科学家通过构建人工系统、设计更高效的固碳模块以及开发多能转化生物装置等,有望突破天然系统瓶颈,实现光能驱动的二氧化碳高效资源化利用。目前,针对天然光合生物固碳系统的人工改造集中于二氧化碳捕集系统、羧化酶的设计与优化等。然而,由于羧酶体或蛋白核等系统组成及结构复杂,异源组装与重构难度较大且功能有限;关于羧化酶复合体的有效组装及作用机制...
天然光合生物系统存在吸收光谱窄、电子传递链复杂且能量损失大等瓶颈问题。通过构建人工系统、设计更为高效的固碳模块以及开发多能转化生物装置等,有望突破天然系统关键瓶颈,实现光能驱动的二氧化碳高效资源化利用。目前,针对天然光合生物固碳系统的人工改造主要集中于二氧化碳捕集系统、羧化酶的设计与优化等。但由于羧酶体或蛋白核等系统组成及结构复杂,其异源组装与重构难度极大且功能有限。同时,由于人们对于羧化酶复合体...
近日,中国科学院上海微系统与信息技术研究所传感技术国家重点实验室采用微纳加工技术,制备了类蚊口器仿生柔性神经探针。该探针能够穿透硬脑膜实现多脑区微创植入,可感知植入过程中颅内血管的存在并提供损伤预警,可实现大脑神经信号的术后即时采集和长期稳定跟踪。相关研究成果以A mosquito mouthpart-like bionic neural probe为题,发表在《微系统与纳米工程》(Microsy...
中国科学院西安光学精密机械研究所专利:一种基于仿生曲面复眼的超大视场偏振相机
2023年7月13日,上海微系统所传感技术国家重点实验室采用微纳加工技术制备了一种类蚊口器仿生柔性神经探针,能够穿透硬脑膜实现多脑区微创植入,可感知植入过程中颅内血管的存在并提供损伤预警,并可实现大脑神经信号的术后即时采集和长期稳定跟踪。相关研究成果以“A mosquito mouthpart-like bionic neural probe”为题于2023年7月12日发表在学术期刊Microsy...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...